Random matrix theory in statistics: A review

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Journal club - Random matrix theory in statistics: A review

The article ”Random matrix theory in statistics: A review” was written by D. Paul and A. Aue and published in the Journal of Statistical Planning and Inference in 2015. Random Matrix Theory (RMT) is interested among other topics in describing the asymptotic behavior of the singular values and singular vectors of random matrices. Random matrices emerge in many statistical problems, that can be t...

متن کامل

Application of Random Matrix Theory to Multivariate Statistics

This is an expository account of the edge eigenvalue distributions in random matrix theory and their application in multivariate statistics. The emphasis is on the Painlevé representations of these distribution functions.

متن کامل

Random Matrix Line Shape Theory with Applications to Lévy Statistics ∗

A model system of a bright state coupled to a manifold of dark states is analyzed with regard to the width distributions of the dark manifold induced in the bright state. Independent box shaped distributions are assumed for the energy distributions, the coupling distributions and the dark level width-distributions. The width distributions induced via the couplings from the dark levels into the ...

متن کامل

Statistics of resonances and delay times in random media: beyond random matrix theory

We review recent developments in quantum scattering from mesoscopic systems. Various spatial geometries whose closed analogues show diffusive, localized or critical behaviour are considered. These are the features that cannot be described by the universal random matrix theory results. Instead, one has to go beyond this approximation and incorporate them in a non-perturbative way. Here, we pay p...

متن کامل

Integrable matrix theory: Level statistics.

We study level statistics in ensembles of integrable N×N matrices linear in a real parameter x. The matrix H(x) is considered integrable if it has a prescribed number n>1 of linearly independent commuting partners H^{i}(x) (integrals of motion) [H(x),H^{i}(x)]=0, [H^{i}(x),H^{j}(x)]=0, for all x. In a recent work [Phys. Rev. E 93, 052114 (2016)2470-004510.1103/PhysRevE.93.052114], we developed ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Statistical Planning and Inference

سال: 2014

ISSN: 0378-3758

DOI: 10.1016/j.jspi.2013.09.005